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ABSTRACT

The existence of ergodic orbits in magnetostatic simulations of

strong ion rings is demonstrated. For nonlinear 2D3V simulations with

axisymmetry the principal manifestation of such orbits is an eventual

violation of left-right mirror symmetry in cases where such symmetry

would normally be expected, due to the exponential divergence of

Oneighboring $  mirror image trajectories. Linearized simulations, in

effect, compute the first order separation of orbits which are displaced

from each other by an infinitesimal vector for all time. When a

linearized code is applied to a problem involving ergodic orbits, the

single-particle growth can be faster than that associated with the

collective modes of interest, rendering the simulation invalid. This

may severely limit the class of problems for which linearized simulation

is applicable. Similar effects are expected in simulations of other

systems, including field-reversed mirror equilibria with large nominal

gyroradi i.
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I. INTRODUCTION

The term "ergodic" is applied to orbits which, loosely speaking,

sweep out a nonzero volume of the appropriate phase space. Nonergodic

orbits are constrained by an additional constant of the motion to lie on

a lower-dimensional surface in this space, and so cannot sweep out a

finite volume. Thick ion rings, with aspect ratios of order unity, have

been found to include a fraction of ergodic single-particle orbits for

moderate values of the field reversal parameter [1]. Some field

reversed mirror plasmas may also entaii ergodic orbits [1,2]. These

configurations are in contrast with infinitesimally-thin "bicycle-tire"

rings for which the poloidal angular momentum provides a constant of the

motion for all'particles, with axially-infinite layers for which the

axial angular momentum is conserved, and with those mirror plasmas in

#hich the magnetic moment is an adiabatic invariant. Furthermore,

finite-aspect-ratio bicycle-tire rings and noninfinite long layer

equilibria, and even certain model thick ion ring equilibria [3], may

also contain no ergodic orbits.

One aspect of ergodic-orbit equilibria is of particular concern to

simulation models in general and linearized simulations in particular.

This is their property of "stochasticiy", whereby neighboring

trajectories diverge from each other exponentially with time, at least

when viewed on a timescale long corroarea with the system's



characteristic timescale (for ion rings this is the self field betatron

timescale). Strictly speaking. stochasticity (in the above sense) is

always present when ergodicity is present, but the converse is not true;

however, the two terms will be used interchangeably in this discussion.

The RINGHYBRID code [4] is a linearized hybrid code which assumes a

nonlinear 203V magnetostatic equilibrium. It models the evolut~on of

linearized nonaxisymmetric (3D) perturbations about this equilibrium.

Using this code, we have observed, and will present, two manifestations

of orbital stochasticity. The first is evident in the zero order motion

of particles in an ion ring, appearing as an eventual violation of

mirror symmetry about the plane z = L/2, and is probably not of serious

consequence. We confirm the existence of both ergodic and nonergodic

zero order orbits by means of surface of section plots. The second

manifestation is a ragged exponential growth of the first-order

separation of the displaced and undisplaced particles. Since this

growth can be rapid, it can easily mask the behavior of the the

collective modes which are the real objects of study in linearized

simulation, thereby rendering the simulation invalid.
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T. EFFECTS UPON THE ZERO ORDER SIMULATION

A. Observation of Ergodicity

The first manifestation of stochosticity is evident in the zero

order particle orbits. Particles are injected over a number of

timesteps to build up an approximate equilibrium possessing mirror

symmetry about the plane z = L/2. That is, for each particle with

phase-space location (r1,ztVri,V,1 ,Vzl) there is another particle at

(r2, ... ) = (r1,L-zi,vrl v91 ,-vz). Self-consistant fields are

calculated using the equation

V X V X A = Job - a0 '

where the last term is used to induce a resistive relaxation toward

equilibrium [5]. After allowing the equilibrium to "settle down" and

any gross collective oscillations to phase mix out (for perhaps 500

timesteps), fields are "frozen" so that the linearized simulation

employs time-invariant "equilibrium" fields. In contrast with the

observed behavior of extremely thin bicycle-tire rings wherein

left-right mirror symmetry obtains throughout the run, in the thicker

rings studied mirror symmetry is seen to persist for a time on the order

of 1000 timesteps, after which it is observed to break down for at least

some of the particles. This can be interpreted as follows: the mirror

image pcrticles are in fact only mirror images to one part in (say) 1013

- roundoff errors in the computation guarantee that no exact mirror

,4.



symmetry can obtain. Thus, except for the axial reflection about L/2,

these two orbits can be considered to be "neighboring trajectories".

These diverge exponentially in time (with noise superposed), and

eventually the difference between the two orbits (i.e., zl+z 2 -L) has

exponentiated from 10- 13 to unity, and the orbits become visibly

different.

A specific example is the run "JVA" (which was re-run as "JWA" with

different diagnostics). For this run 2400 simulation particles were

employed, the major radius was r0=15, the wall was at rw=24, and the

periodicity length L was 24. The radial and axial rms halfwidths were

2.0 and 2.8 respectively (due to finite particle size the effective

halfwidths are somewhat larger). The external-field cyclotron period

was 40.0, the mean gyration period being increased to 42 by self-field

effects. A nominal betatron period, obtained by integrating over J (as

in eq. 27 of reference [6]), was 52 timesteps, although axial and radial

betatron periods differ greatly for a ring of this geometry. The field

reversal factor was 18 percent on axis, and 25 percent immediately under

the ring. For this run the convergence criterion for the zero order

field-solver was set to EPS=I0 - 13 , so that the initial symmetry was good

to somewhat fewer than 13 digits, taking error propagation on the mesh

and the actual magnitude of A e into considerat;on. The resistive

relaxation term o was used with a value of .125, and zero order fields

were "frozen" at timestep 450.

Snapshots of the ring at timesteps 500 and 2000 are presented in

Figs. la and lb respectively. Asymmetries, especially in those particle

orbits with large axial excursions, are evident in the plots at IT =

2000.
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la. Particle locations in the r - z plane at timestep 500.

Note the absence of assymmetry about z =L/2.
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lb. Particle locations in the r -z plane at timestep 2000.

Assymmetry about z = L/2 is now evident.



The second figure shows the orbits of a pair of particles which

were initially mirror images of each other. For each particle r and z

are plotted as functions of time. Mirror symmetry is seen to obtain

until approximately timestep 1100, at which point the orbits become

visibly different (much easier to see on a larger plot - on this one the

orbits differ visibly only after another 100 timesteps or so). The

straight vertical lines are the result of the periodic particle boundary

condition being enforced when a particlepasses through z = 0 or z = L.

Note that this pair of particles was selected to illustrate the eventual

breaking of mirror symmetry - not all pairs of particles would have

shown this effect.

Using an interactive debugging routine, the quantity z1 +z 2 -L was

printed out at every other timestep. From this printout the growth rate

of the separation of the "neighboring" mirror image orbits could be

calculated. The timestep at which each decade of separation was first

reached was noted:

decade -11 was first reached at IT 90

-10 230

-9 296

-8 332

-7 404

-6 616
-5 728
-4 764

-3 872
-2 956
-1 1068.

We thus find a decade time of roughly (1068-90)/10 % 100 timesteps. The

corresponding growth rate is comparable to the betatron frequency.

Plots of this quantity for a similar run are shown in Fig. 5, discussed

Delow.
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2. The orbits of a pair of porticles which were initially a

mirror image pair, selected from run JWA with EPS = 1013

-he histories of r and : as functions of time are shown.

Mirror symmetry about Z = L/2 is evident until approximatelv

+,mestep 1100.
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To further verify that we are not simply observing a code "bug".

runs were carried out using other values of the zero order fieldsolver

convergence criterion, EPS. Run "JYA" used EPS = 10-11; for this run a

difference was visible (on a large copy of Fig. 3) at about IT = 1075.

This is not much earlier than in JWA, but recall that the growth is

noisy and that absolute precision of the computer is about 14 digits, so

that JWA's value of EPS probably cannot give much better accuracy than

the less stringent value used in JYA. To see the effect more clearly,

another run, "KAA", was made using EPS = 10 - 9 (see Fig. 4). For this

run differences between the mirror image particles are visible at

roughly IT = 825. This is about 250 timesteps earlier than in run JYA;

since this run had an initial perturbation roughly 100 times as large as

JYA, it would be expected to need two decades, or on the order of 200

timesteps, less growth for the separation to be visible. This appears

to be consistant with the value of 250 observed.

Even though the orbits diverge greatly, energy conservation for

both is excellent since only "rotations" of the velocity in the magnetic

field are performed. However, since only B and not A. is used to

advance the particle, it is hard to have a reliable measure of how well

the canonical angular momentum is conserved. Using values of A. from

which B was calculated by finite differences shows P9  conservation to be

valid within 5 or 10 percent, with P. oscillating without any change on

a long timescale. However, this measure is somewhat unreliable, and the

oscillations probably have no real meaning. In runs using a finer grid

and smaller timestep the magnitude of these oscillations was less. but

code behavior was similar.

• 9
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4. he same quantities from run KAA with EPS 10-O9. Symmetry

iolds until approximately timestep 825.
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B. Ergodicity and Confinement

The zero order effect eventually leads to a lack of symmetry of the

ring; this is partly due to the small number of particles leading to

fluctuations that only seemingly violate axial momentum conservation

(consider a single particle in a mirror field - its axial momentum is

not conserved). The effect is magnified by the periodic particle

boundary condition; if one of the ex-mirror image pair of particles

reaches the boundary at z = 0 or L. and the other does not, the center

of mass of the ring shifts to one side or the other.

in addition, a particle may leave the ring (by entering the "loss

cone") even after it has exhibited a large number of betatron

oscillations within the confines of the ring; such a particle must be

considered an "unconfined particle". An example is shown below wherein

one particle was unconfined (first reached z = 0 or L) at ti-nestep 2600,

while its "mirror image" was confined until timestep 8400. The

equilibrium fields of necessity include contributions from this class of

particles. Lovelace has shown that exponential rigid rotor equilibria,

for example, contain unconfined orbits [7], and therefore require

sources and sinks of particles at z = .

There appears to be a correlat;on between whether or not a

particle's orb;t is unconfined cnd whether or not it is ergodic (as

expected, since both are associated with high energy), but it is not

one-to-one. That is, some apparently confined particles show ergodic

, "9



motion - one cannot be sure they are in fact confined without making an

infinitely long run, at least with the usual scheme of injection wherein

random velocities are added to the injected particles (in a mirror -

symmetric manner). Most recently, a run (KKA) was made wherein no

random velocities were added. In this run each group of injected

particles could only self-pinch together, and lose energy due to the

inductive electric field when succeeding groups of particles were

injected. Thus, all particles were necessarily confined (this was

observed to be the case); nonetheless, the ergodicity - induced

assymmetry was present in this run. Note that this method of injection

gave an equilibrium which was not at all like a rigid rotor in that the

angular velocity showed high shear.

On theoretical grounds one expects a different relationship between

confinement and stochosticity depending upon whether the particle orbit

encircles the axis (ion ring case) or does not (small-orbit mirror

plasma, most particles). In the former, the level surfaces of the

effective potential are closed, so that particles of small enough energy

must be absolutely confined, while in the latter, the surfaces extend to

infinity and confinement normally depends upon the particle pitch angle

[9]. Jumps in the adiabatic invariant M associated with stochasticity

effectively eniarge the loss cone so that all stochastic orbits which do

not encircle the axis ore unconfined and should be excluded from the

equilibrium [2]. However, for the ion-ring case (and for large orbit

field-reversed mirrors as well) our experience suggests that an

appreciable number of confined stochastic particles are generally

present, at least when equilibria are formed by injection.

* 1



C. System Length and "Unfrozen" Fields

Runs were made using a larger number of cells axially (a larger

vacuum region on each side of the ring, and a longer periodicity length

- the cell size was kept constant). Run "JZA" used 48 cells in z, while

"KBA" used 96 cells. In general, we observed that the longer the

periodicity length, the longer it took for the (some) two test particles

to show assymmetry. Note that assymmetry showed up in the latter run

even though the test pair did not reach the axial boundary during the

run, but took nearly to timestep 2000 to do so, in contrast with the

shorter systems described above wherein assymmetry was visible after

about 1000 steps. Presumably this change in the rate of growth of

assymmetry occurs because the shape of the effective potential well is

different for the various system lengths, both due to the boundary

condition on .,, fieldsolver being imposed at different places and due

to the fact that in the axially short runs the particle periodicity

condition was enforced more often during the setting up of the

equilibrium fields. We do not anticipate that making the system longer

still would reduce the ergodic behavior to any great degree, since the

96-cell system is already much longer than the ring, but have not

verified this conjecture.

For the axially long systems, the axial halfwidth of the ring was

observed to increase at long times both more rapidly and to a larger

value than in the shorter systems (with similar rings but different

"tanks"). Presumably this is due to the fact that when particles find

their way into the "loss cone" they have a larger distance to travel

,A 14



before reentering the ring region one axial period later, and so the

halfwidth can grow appreciably. The growth in axial length is

associated with unconfined (high energy) particles, and so tends to be

present when ergodic orbits are present.

The breaking of mirror symmetry, and the axial halfwidth growth as

well, were present even in a run wherein the zero order fields were

never "frozen"; in fact the halfwidth growth was somewhat more

pronounced in this case. We concl'ude that keeping fields "unfrozen"

does not reduce the effects of ergodic orbits.

D. Implications

i
We believe this loss of symmetry has not been noted previously in

simulations of field-reversed ion rings and mirror plasmas, although it

may have been present in runs of RINGA [10,11] or SUPERLAYER [12).

Normally, small deviations from symmetry (in runs where symmetry would

he expected) are not measured in such simulations, and in a nonlinear

203V code these are the only quantities which grow exponentially. Also,

"satur'ation" of this effect must set in when the amplitude becomes

comparable to the system size, or perhaps more properly to a smaller

"island width" of the ergodic region in the r-z projection of phase

space [2). Figure 5 shows the quantities rl-r 2 ; and z1 +z2-L platted

as functions of time for a run with L = 96. The lost three decades of

exponential growth, and the "saturated" state, can be seen. Here

15
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5. Plot of r1-r27 and zl+z2-L; as functions of time

for a run with L = 96. The maxima of these quantities are seen to be

of order the system size.
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V

"saturation" appears to occur when the separation of the orbits is of

order the system size.

The loss of symmetry to zero order probably is not of great

fundamental consequence by itself. One could simulate only the region Z

> L/2 for example, enforcing the mirror symmetry for all time, if one

were only interested in the zero order ring behavior.

III. SURFACES OF SECTION AND ERGODICITY

To confirm that we are in fact observing both nonergodic ana

ergodic orbits, surface of section plots were generated. These show the

particular values taken by r and P of each particle as the particle

passes through z = L/2. Such plots, and variations using other

variables, have been employed previously to show orbital ergodicity Ill.

They depict a "slice" of the phase space through which the particle

trajectory moves. If the particle orbit is to sweep out a nonzero

volume of this space, it must also sweep out a nonzero area of the

slice. To make the plots, a postprocessor progrln was written. It

extracted the tracer particle histories of r and z as functions of time

from a printed output file, which was generated by RINGHYBRID and

rearranged using a text editor. The program computed the instants of

time at which z = L/2 was crossed using linear interpolation on the

history of z. Again using linear interpolation, the values of r at

these same instants were calculated from the r history. Finally, the

t !7



associated values of P were calculated by a simple finite difference.

While this interpolation scheme is of low order, it appears to be

reasonably effective when small timesteps are taken and the histories

are arranged so as to save every point of the trajectory. Furthermore,

it can be argued that the simple leapfrog mover used by the code does

not justify a higher-order interpolation scheme, though this point is

not entirely clear.

Illustrated in Fig. 6 are the r and z histories of a nonergodic

particle selected from a run with L 96. The plot shows the trajectory

over 8000 timesteps, a very long run for the code. In Fig. 7 the

surface of section plot for this particle is shown. Fields were

"frozen" at timestep 450 and every other timestep was saved in the

history file; the plot shows points taken from the interval between

timesteps 452 and 8000. The plane z = L/2 was crossed 235 times during

this time. Points in this plot are observed to fall on a

crescent-shaped curve, without filling in the area of the crescent.

There is, however, considerable raggedness to the plot, which may be

ascribed to the finite timestep and the diagnostic interval of two. To

demonstrate this, Fig. 8 shows a surface of section for the some

particle using a diagnostic interval of one step and starting from

timestep 451. The curve is seen to be much smoother than that of

Fig. 7.

The orbit of an ergodic particle from the same run is shown in

Fig. 9. The particle is not bound and the periodicity condition is

enforced a number of times, the first time being approximately at

timestse 2600. The surface of section plot for this particle is shown

in Fig. 10. Diagnostics were made every timestep. For this trajectory

!a!
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r r

7. A surface of section plot for the particle of fig. 6, as described in

the text. Diagnostics were performed every other timestep, and linear

interpolation between these points was used. Note that points fall

on a crescent but do mot fill the area enclosed by the crescent.
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10. Surface of section plot for the ergodic particle of fig. 9. The

points fill an annular region, and are not confined to the outline

of a region as was the case for the particle of figs. 6 8.
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there were 89 crossings of z = L/2. There is evidently a qualitative

difference between this orbit and the previous one, as here the points

do not lie on a smooth curve but appear to fill an annular region of the

plane. The orbit of the particle that was initialized to be the mirror

image of the particle i'h Fig. 9 is shown in Fig. 11. In contrast with

its "mirror image", this particle appears to be bound for the 8000

timesteps illustrated. In fact, a continuation of the run shows this

particle to be unbound, first reaching the end of the system at timestep

8400. It would be surprising were this not the case, as the same

regions of phase space should normally be acessible to both of a mirror

image pair of ergodic particles. The surface of section plot for this

trajectory is shown in Fig. 12; in fact, this plot and that of Fig. 10

might be superposed to give a clearer picture of the area of the r -

F plane access~bte. There were 154 crossings of z L/2 in this case.

24
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IV. EFFECTS UPON THE LINEARIZED SIMULATION

A. Observation

The second manifestation of the diverging trajectories is of much

greater fundamental concern. In the first order linearization, we

consider the motion of a "displaced point" P' relative to that of an

unperturbed point P [4]. The vector separation between the two is

denoted as c. Since the points P and P" represent neighboring

trajectories, when orbits are ergodic we can expect the magnitude of t

to increase exponentially with time whether or not Eulerian first-order

fields are included in the calculation, since the stochastic growth is

due to particle motion in the inhomogeneous zero order field. This is

in fact the observed behavoir.

Figure 13 shows part of a non-ergodic particle orbit (r and z

versus time) selected from a run with the parameters of KBA. This is

the same particle plotted in Fig. 6; timesteps 2000 to 4000 are shown

here in detail. For this particle, time histories of the magnitudes of

the r, 0, and z components of £ are plotted in Fig. 14. The initial

excitation was implemented by giving all particles a positive first

order axial velocity i at timestep 500, and no Eulerian first-order

fields were included in the calculation. All components of E are seen

to oscillate steadily. This may be contrasted with the behavior of the

ergodic particle of Fig. 9, part of the orbit of which is shown in

greater detail in Fig. 15. As seen in Fig. 16, all components of E grow

27
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13. Expanded r and z histories for the nonergodic particle of figs. 6 - 8.
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15. Expanded r and z histories for the ergodic particle of figs. 9 and 10.
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noisily. Figure 17 shows the time histories of the components of the

mean i obtained by averaging over all particles. The mean r. shows

stable oscillation at first, as would be expected without any first

order field response to drive kink modes etc., but soon the ragged

growth characterizing the single-particle modes takes over. The r and 9

mean components are initially zero due to the symmetry of the first

order initialization. As symmetry breaks down they grow rapidly to a

level comparable to that of the z component, then grow at the same

(slower) rate as the latter. This Is because the three components of r

are mutually coupled for each particle, as seen in the previous figure.

The growth is even faster in runs with a shorter periodicity length L.

When the term voX(L.V)B0 in the linearized equation of motion is

deleted, the first order motion is observed to become stable. To

understand this lack of growth note that, using the linearized equation

of motion,

d/dtC(.tO+1) 2 ] = 2!.joX(L.V)gO],

so that i cannot grow indefinitely when the right hand side is zero.

This term is responsible for making the orbit of P' a neighboring orbit

to that of P. and not an identical orbit as when the term is omitted.

Because of the relationship between high energy (large excursion)

and ergodicity, an attempt was made to eliminate the large-excursion

particles by placing "sticky" walls at Z = 6 and 18, in a run with

L = 24. While 400 of the 2400 particles were removed, stochastic growth

of L was still present, and the maximum growth rate was only slightly

less than in the comparable run made without the sticky walls. See also

-- ~ -31 ------
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16. Time histories of the magnitudes of the r, 0, and z components of

z for the ergodic porticle of figs. 9, 10, and 15. Noisy growth

;s evident.
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the discussion of run KKA in the section above on ergodicity and

confinement.

B. Implications

This type of dynamical instability is quite distinct from the

collective plasma effects we wish to examine. In a true Vlasov plasma

with an infinite number of particles, the random phases of the growing

displacements E for all particles would be expected to cancel out in the

mean, and no gross plasma moments would be affected. However, in a

simulation plasma with perhaps one to ten thousand particles, this may

not be the case. Since different particles have different growth rates,

the single-particle growth of one or a few particles comes to dominate,

and when we examine moments such as mean r, first order currents,

etc. the only thing that appears is the effect of this one or few

particles. Unless the collective mooes have a higher growth rate than

the fastest growing single particle mode, only the latter con be seen,

and regardless of background plasma parameters the growth will appear

the some.

If one attemts to minimize the stochastic growth by increasing the

number of particles, the reduction is small since the cancellation

should improve only as the square root of the number of particles.

Attempts to reduce the mean rate of growth by emp!oying up to 9600

particles were unsuccessful, possibly because when more particles were

used some fell on orbits with even higher associated growth rates.
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Presumably cancellation would occur if a far greater number of particles

were employed.

J.M. Finn has observed, in computer experiments using model

potentials, a strong model dependence of the ergodic properties. In two

of three models, including one self-consistant model, he observes

predominantly ergodic behavior, while in the last (nonself-consistant)

model he observes only limited ergodic behavior. D. A. Larrabee and

R. V. Lovelace, using a different self-consistant model not described in

detail, find ergodic orbits to be present only in one "highly

compressed" ring E3]. By suitable choice of model it may thus be

possible to find equilibria with only weak single-particle growth. or

none at all. This may present a serious restriction on the class of

problems which can be run. Discrete representations of numerically

calculated Vlasov equilibria may prove useful, since equilibria formed

by injection, as in RINGHYBRID, are rather likely to encompass ergodic

orbits. However, even some equilibria formed by injection can be

expected to prove usable; recent results suggest that in one fully field

reversed ring with an aspect ratio of order 4:1 the ergodic growth is

slow enough that meaningful conclusions about col lective behavior can be

drawn from the results.

It may be possible to treat problems involving ergodic orbits by

other means. Perhaps the fastest-growing particles can be removed from

the computation artificially, at some risk of affecting the physics.

This may be most reasonable for mirror plasmas where only a small

fraction of the particles are both axis-encircling and ergodic. It may

be possible to reconstruct the distribution function fl, and possibly

f0 , periodically in a moment-conserving manner, as a possible means of
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smoothing out the single-particle effects [13]. Finally, it may be

possible to obtain results on collective behavior by somehow

"subtracting" a run mode without any first-order field response, such as

the run illustrated, from one with full plasma response. The problem

with the latter approach is that any errors in the subtraction also grow

exponentially, and it is probably impossible to get amplitude and phase

of the single particle modes in the two runs aligned with each other.

V. CONCLUSIONS

In summary, the effects of ergodic single-particle orbits have been

observed in a series of computer simulations of strong ion rings. It is

anticipated that they are also present in a wide class of systems such

as field-reveresed mirror plasmas with large nominal gyroradius.

Nonlinear 2D3V codes are able to treat problems involving ergodic orbits

with only minor difficulties. These include an eventual violation of

mirror symmetry and small fluctuations in a normally conserved momentum.

Linearized codes, however, are more severely affected by the presence of

ergodic orbits. The exponential growth of the displacement between

unperturbed and perturbed trajectories can be sufficiently rapid as to

mask the collective modes which are the true objects of study. Fully

nonlinear 3-D codes may also experience difficulties vhen ergodic orbits

are present; the mode being studied may saturate at a lower level than

that associated with the stochastic growth. At present we know of no
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way to eliminate the undesirable single-particle modes when ergodic

orbits are present; however, it is possible that by careful choice and

implementation of equilibria, linearized simulations will still prove

applicable to a wide class of problems.
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